Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 182: 114151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519162

RESUMO

To better understand the functional mechanism of four types of tea (green tea, black tea, jasmine tea, and dark tea) on the quality of stewed beef, changes in quality characteristics, proteomics, and metabolomics were investigated. Adding these four tea types decreased the pH value, L* value, shear force, and hardness of the stewed beef. Among these groups, black tea (BT) significantly improved the tenderness of the stewed beef. They have substantially impacted pathways related to protein oxidative phosphorylation, fatty acid degradation, amino acid degradation, and peroxisomes in stewed beef. The study identified that Myosin-2, Starch binding domain 1, Heat shock protein beta-6, and Myosin heavy chain four are significantly correlated with the quality characteristics of tea-treated stewed beef, making them potential biomarkers. Green tea (GT), black tea (BT), jasmine tea (JT), and dark tea (DT) led to the downregulation of 20, 36, 38, and 31 metabolites, respectively, which are lipids and lipid-like molecules in the stewed beef. The co-analysis of proteomics and metabolomics revealed that differential proteins significantly impacted metabolites associated with carbohydrates, amino acids, lipids, and other nutrients. This study determined the effects of four types of tea on the quality of stewed beef and their underlying mechanisms, providing valuable insights for applying of tea in meat products. At the same time, it can offer new ideas for developing fresh meat products.


Assuntos
Camellia sinensis , Carne Vermelha , Animais , Bovinos , Proteômica , Multiômica , Carne Vermelha/análise , Chá/química , Lipídeos
2.
Food Technol Biotechnol ; 61(1): 27-38, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37200790

RESUMO

Research background: The processing method generally affects the toxicity and biological activity of aged sorghum vinegar. This study investigates the changes in the intermediate Maillard reaction products of sorghum vinegar during ageing and the in vivo hepatoprotective effects of pure melanoidin obtained from it. Experimental approach: High-performance liquid chromatography (HPLC) and fluorescence spectrophotometry were utilized to quantify intermediate Maillard reaction products. The CCl4-induced liver damage in rats was used to evaluate the protective role of pure melanoidin in rat liver. Results and conclusions: Compared with the initial concentration, the 18-month ageing process caused a 1.2- to 3.3-fold increase in the concentrations of intermediate Maillard reaction products, i.e. 5-hydroxymethylfurfural (HMF), 5-methylfurfural (MF), methyglyoxal (MGO), glyoxal (GO) and advanced glycation end products (AGEs). The concentrations of HMF in the aged sorghum vinegar were 6.1-fold higher than the 450 µM limit standard for honey, implying the need for shortening the ageing of the vinegar in practice for safety concerns. Pure melanoidin (Mr>3.5 kDa) demonstrated significant protective effects against CCl4-induced rat liver damage, as evidenced by normalized serum biochemical parameters (transaminases and total bilirubin), suppressing hepatic lipid peroxidation and reactive oxygen species, as well as increasing glutathione amount and restoring antioxidant enzyme activities. Histopathological analysis revealed that melanoidin in vinegar reduced cell infiltration and vacuolar hepatocyte necrosis in rat liver. The findings demonstrated that a shortened ageing process should be considered in practice to ensure the safety of aged sorghum vinegar. Vinegar melanoidin is a potential alternative for the prevention of hepatic oxidative damage. Novelty and scientific contribution: This study demonstrates that the manufacturing process had a profound influence on the generation of vinegar intermediate Maillard reaction products. In particular, it revealed the in vivo hepatoprotective effect of pure melanoidin from aged sorghum vinegar, and provides insight into the in vivo biological activity of melanoidin.

3.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406277

RESUMO

Plant-derived polysaccharide's conformation and chain structure play a key role in their various biological activities. Lycium barbarum L. leaves' polysaccharide is well renowned for its health functions. However, its functional bioactivities are greatly hindered by its compact globular structure and high molecular weight. To overcome such issue and to improve the functional bioactivities of the polysaccharides, degradation is usually used to modify the polysaccharides conformation. In this study, the ethanol extract containing crude Lycium barbarum L. leaves' polysaccharide was first extracted, further characterized, and subsequently chemically modified with vitamin C (Ascorbic acid) and hydrogen peroxide (H2O2) to produce degraded Lycium barbarum L. leaves' polysaccharide. To explore the degradation effect, both polysaccharides were further characterized using inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), high performance gel permeation chromatography (HPGPC), and scanning electron microscope (SEM). Results shown that both polysaccharides were rich in sugar and degradation had no significant major functional group transformation effect on the degraded product composition. However, the molecular weight (Mw) had decreased significantly from 223.5 kDa to 64.3 kDa after degradation, indicating significant changes in the polysaccharides molecular structure caused by degradation.

5.
Altern Ther Health Med ; 27(S1): 30-44, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33373323

RESUMO

Coronavirus disease 2019 (COVID-19) is a recently emerged pandemic caused by a novel virus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease is communicable and mainly affects the respiratory tract. The outbreak of this disease has greatly influenced human health and economic activities worldwide. The absence of any medication for this infection highlights the urgent need for the development of alternative methods for managing the spread of the disease. Our immune system operates based on a complex array of cells, processes, and chemicals that continuously protect our body from invading pathogens, including viruses, toxins, and bacteria. The present study was conducted to perform a comprehensive review of all dietary treatments for boosting immunity against viral infections. No study was found to explicitly support the use of any healthy foods or supplements to protect against COVID-19. However, this study offers details on well-researched functional foods and supplements that typically improve the immune response, which could be helpful against this newly emerged pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Surtos de Doenças/prevenção & controle , Alimento Funcional , Humanos , Pandemias
6.
Int J Biol Macromol ; 143: 76-84, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816381

RESUMO

Acidic heteropolysaccharide (LP) from Lycium barbarum L. leaves has compact globular structure which wrapped abundant endogenous minerals inside by ionic interactions with uronic acid. This study investigated the efficacy of chemical degradation of LP on the bioaccessibility and transport of endogenous minerals in simulated gastrointestinal fluids. Results showed that the degradation using vitamin C and hydrogen peroxide mildly decreased LP molecular weight from 162.0 kDa to 94.3 kDa, and the structure of degraded LP (LPD) was converted to loose coil. After the simulated intestinal digestion, the accessibility of Ca, Fe, Zn, and Mg in LPD increased by119%, 52%, 103% and 112.5% compared with the intact LP, respectively, and in particular, the uptake rate increased by 15.8%, 8.1%, 23.4% and 21.6% for Ca, Fe, Zn, and Mg, respectively. These results demonstrated that the chemical degradation is a helpful strategy to improve the uptake of endogenous minerals wrapped in polysaccharide.


Assuntos
Trato Gastrointestinal/metabolismo , Lycium/metabolismo , Minerais/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Digestão , Humanos , Minerais/química , Polissacarídeos/química , Análise Espectral
7.
Int J Biol Macromol ; 133: 674-682, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022485

RESUMO

In the current study, a carboxyl-rich polysaccharide purified from Lycium barbarum L. leaves (hereafter, LP) and its degradation with ascorbic acid and hydrogen peroxide were characterized. Degradation decreased the molecular weight of LP from 4.63 × 104 to 3.45 × 104 Da, and increased its zeta potential from -8.01 to -5.35 mV. In vitro experiments showed that degradation significantly increased the anticoagulant activity and, in particular, antiplatelet activity of LP (p < 0.05). The polysaccharide with the highest degree of degradation had higher inhibitory activity than aspirin against arachidonic acid- and thrombin-induced platelet aggregation at 0.5 g/mL. A reduction in uronic acids between LP and its degradation products significantly decreased their antiplatelet activity (p < 0.05). Further analysis confirmed that polysaccharides changed from a compact spherical structure to a random coil in aqueous solution following degradation, which facilitated the interaction of polysaccharides and platelets.


Assuntos
Lycium/química , Folhas de Planta/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Ácido Ascórbico/química , Configuração de Carboidratos , Frutas/química , Humanos , Peróxido de Hidrogênio/química , Peso Molecular , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...